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In a stationary case and for any potential, we solve the three-dimensional quantum
Hamilton-Jacobi equation in terms of the solutions of the corresponding Schrödinger
equation. Then, in the case of separated variables, by requiring that the conjugate mo-
mentum be invariant under any linear transformation of the solutions of the Schrödinger
equation used in the reduced action, we clearly identify the integration constants succes-
sively in one, two and three dimensions. In each of these cases, we analytically establish
that the quantum Hamilton-Jacobi equation describes microstates not detected by the
Schrödinger equation in the real wave function case.
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linear transformations; microstates.
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1. INTRODUCTION

Microstates were first introduced by Floyd (1982, 1996a,b, 2000) and inves-
tigated by other authors (Faraggi and Matone, 1998a, 2000; Carroll, 1999; Bouda,
2001). They represent physical states predicted by the quantum Hamilton-Jacobi
equation but not detected by the Schrödinger wave function. Up to now, all the
analytical descriptions of microstates are considered in one dimension. In this
paper, one of our principal objective is their description in higher dimensions.

Recently, quantum mechanics was derived from an equivalence postulate in
the one-dimensional space by Faraggi-Matone (Faraggi and Matone, 1998a,b,c,
1999, 2000; Matone, 2002a,b). These authors, together with Bertoldi, extended
their finding to higher dimensions (Bertoldi et al., 2000). In particular, they estab-
lished a new version of the quantum stationary Hamilton-Jacobi equation (QSHJE)
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given by the two relations

1

2m
( �∇S0)2 − h2

2m

�R

R
+ V (x, y, z) = E, (1)

�∇ · (R2 �∇S0) = 0, (2)

for a non-relativistic spinless particle of mass m and energy E in an external
potential V (x, y, z). Relations (1) and (2) represent a new version of the QSHJE
because the reduced action S0 and the function R are related to the Schrödinger
wave function by

� = R

[
α exp

(
i
S0

h

)
+ β exp

(
−i

S0

h

)]
, (3)

α and β being complex constants. This relation is also reproduced in Bouda (2001)
where (1) and (2) are derived from the Schrödinger equation (SE) by appealing to
the probability current. By setting

α = |α| exp(ia), β = |β| exp(ib), (4)

where a and b are real parameters, expression (3) of the wave function can be
written as (Bouda, 2001)

� = R exp

(
i
a + b

2

)[
(|α| + |β|) cos

(
S0

h
+ a − b

2

)

+ i (|α| − |β|) sin

(
S0

h
+ a − b

2

) ]
. (5)

In Bohm’s theory (Bohm, 1952a,b), in which α = 1 and β = 0, the reduced
action S0 is a constant in the case where the wave function is real, up to a constant
phase factor. However, with expression (3), S0 is never constant. In particular, we
clearly see from (5) that the reality of the wave function is expressed by |α| = |β|
and not by S0 = cte.

On the other hand, many suggestions to formulate the quantum trajectory
equations were proposed (Bohm, 1952a; Floyd, 1982, 2000; Bouda and Djama,
2001, 2002a,b; Bouda and Hammad, 2002). In a recent paper (Bouda, 2003), the
QSHJE in one dimension,
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is reproduced from a general lagrangian depending on coordinate x and its
higher temporal derivatives (ẋ, ẍ, . . .) by appealing to the dimensional analy-
sis. In particular, it is analytically established that the resulting quantum law of
motion is

mẋ = ∂S0

∂x
, (7)

recalling the Bohm relation. However, in contrast to Bohm’s theory (Bohm,
1952a,b) where S0 is deduced from the wave function (3) by setting α = 1 and
β = 0, in Bouda (2003), S0 represents the solution of the third order differential
Eq. (6). The extension of relation (7) to three dimensions can be sensibly assumed
as

mẋ = ∂S0

∂x
, mẏ = ∂S0

∂y
, mż = ∂S0

∂z
. (8)

Here, S0 must be a solution of the couple of relations (1) and (2).
The paper is organized as follows. In Section 2, we solve in three dimensions

the QSHJE for any potential. In Section 3, we consider the case of separated
variables and identify the integration constants of the reduced action. We then
investigate in Section 4 microstates in one and higher dimensions. Finally, we
devote Section 5 to conclusion.

2. THE THREE-DIMENSIONAL SOLUTION OF THE QSHJE

From Eq. (5), we can deduce that (Bouda, 2001)

S0 = h arctan

(
|α| + |β|
|α| − |β|

Im
[
exp (−i(a + b)/2) �

]
Re

[
exp (−i(a + b)/2) �

]
)

+ h
b − a

2
. (9)

The corresponding Bohm’s relation can be easily obtained by taking
in this last relation |α| = 1 and |β| = a = b = 0 (α = 1, β = 0). Since the
stationary SE

− h2

2m
�ψ + V (x, y, z) ψ = Eψ, (10)

is linear, and taking into account the fact that for any solution φ of relation (10)
then Re φ and Im φ are also solutions, expression (9) and its corresponding Bohm’s
one strongly suggest to search for the QSHJE (Eqs. (1) and (2)) a solution in the
following form

S0 = h arctan

(
ψ1

ψ2

)
+ hl, (11)
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where ψ1 and ψ2 are two real independent solutions of the SE, Eq. (10), and l an
arbitrary dimensionless constant. Setting

U = ψ1

ψ2
, (12)

we have

�∇S0 = h �∇U

1 + U 2
. (13)

Substituting this expression in (2), we obtain

2 �∇R · �∇U − 2UR

1 + U 2
( �∇U )2 + R�U = 0. (14)

Using the fact that ψ1 and ψ2 solve (10), from (12) we can deduce that

�U = −2
�∇ψ2

ψ2
· �∇U. (15)

It follows that relation (14) takes the form( �∇R

R
− U �∇U

1 + U 2
−

�∇ψ2

ψ2

)
· �∇U = 0. (16)

As ψ1 and ψ2 are independent solutions of (10), in general �∇U does not
vanish and is not perpendicular to the vector in brackets appearing in (16). It
follows that

�∇R

R
= U �∇U

1 + U 2
+

�∇ψ2

ψ2
. (17)

Substituting this relation in the identity

�R

R
= �∇ ·

( �∇R

R

)
+

( �∇R

R

)2

(18)

and using (15), we obtain

�R

R
=

( �∇U

1 + U 2

)2

+ �ψ2

ψ2
. (19)

Using (13) and taking into account the fact that ψ2 solves (10), relation (19)
becomes

�R

R
=

( �∇S0

h

)2

+ 2m (V − E)

h2 . (20)
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This expression is equivalent to Eq. (1). This result means that expression
(11) for S0 is a solution of the QSJHE, (Eqs. (1) and (2)).

Now, let us determine the expression of R. Substituting (12) in (17), we
obtain

�∇R

R
= 1

2

�∇ (
ψ2

1 + ψ2
2

)
(
ψ2

1 + ψ2
2

) , (21)

which leads to

�∇

ln

R√
ψ2

1 + ψ2
2


 = �0. (22)

Finally, we obtain

R = c

√
ψ2

1 + ψ2
2 , (23)

where c is an integration constant.
Of course, a direct substitution of expressions (11) and (23) in (1) and (2)

allows, with the use of the SE, to check that these expressions are indeed solutions
of (1) and (2).

3. THE CASE OF SEPARATED VARIABLES

3.1. The One-Dimensional Case

Before we examine the higher-dimensional cases, it is instructive to consider
the problem of identifying the integration constants in one dimension. The SE,
Eq. (10), reduces to

− h2

2m

d2ψ

dx2
+ V (x) ψ = Eψ. (24)

Let (φ1, φ2) be a set of two real independent solutions of (24). Since the SE is
linear and always admits two real independent solutions, in order to make visible
all the integration constants in (11), let us write the real functions ψ1 and ψ2 in
the general form

ψ1 = ν1φ1 + ν2φ2, ψ2 = µ1φ1 + µ2φ2, (25)

where (ν1, ν2, µ1, µ2) are arbitrary real constants satisfying the condition ν1µ2 �=
ν2µ1 which guarantees that ψ1 and ψ2 are independent. Relation (11) turns out
to be

S0 = h arctan

(
ν1φ1 + ν2φ2

µ1φ1 + µ2φ2

)
+ hl. (26)
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This expression must be a general solution of the one-dimensional QSHJE,
Eq. (6). As explained in Bouda (2001), Eq. (6) is a second order differential
equation with respect to ∂S0/∂x, then this derivative must depend only on two
integration constants. Therefore, the function S0 contains a further constant which
must be additive. It is represented by hl in (26). Thus, we can set ν1 = µ2 = 1
and interpret (µ1, ν2, hl) as integration constants of S0.

However, the extension of this reasoning to higher dimensions is not trivial
even in the case of separated variables. In fact, in two or three dimensions we have
not an ordinary differential equation, but a couple of two partial differential equa-
tions, Eqs. (1) and (2). For example in three dimensions, where the potential takes
the following form V (x, y, z) = Vx(x) + Vy(y) + Vz(z), if we tempt to search for
Eqs. (1) and (2) solutions with the standard method by writing S0 in the form

S0(x, y, z) = S0x(x) + S0y(y) + S0z(z),

and use for R a form as the one given in Bertoldi et al. (2000)

R(x, y, z) = Rx(x)Ry(y)Rz(z),

the three separated equations which result from Eqs. (1) and (2) differ from the
usual one-dimensional QSHJE and lead to a deadlock. This is the reason for which
we will resolve this problem with a novel approach. We first review the problem
in one dimension and reproduce the expected results. This approach consists in
determining the minimum number of parameters in the set (ν1, ν2, µ1, µ2), which
we must keep free in the expression of S0, but sufficient to guarantee the invariance
of the conjugate momentum

∂S0

∂x
= ∂S̃0

∂x
(27)

under an arbitrary linear transformation of the couple (φ1, φ2)

φi → θi =
2∑

j=1

αijφj , i = 1, 2 (28)

S̃0 being the new reduced action and αij arbitrary real constant parameters. In
other words, if we choose another couple (θ1, θ2) of the solutions of SE instead of
(φ1, φ2) and write the reduced action in the same form as in (26),

S̃0 = h arctan

(
ν̃1θ1 + ν̃2θ2

µ̃1θ1 + µ̃2θ2

)
+ hl̃, (29)

the equation of motion, as relation (7), must remain unchanged, meaning that
our mathematical choice does not affect the physical result. In this procedure,
we have to accomplish two principal simultaneous tasks. The first is to prove for
any transformation (28) the existence of the parameters (ν̃1, ν̃2, µ̃1, µ̃2), used in
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S̃0 instead of (ν1, ν2, µ1, µ2), in such a way as to guarantee the invariance (27).
The second task consists in eliminating the maximum of parameters in the set
(ν1, ν2, µ1, µ2) as in (ν̃1, ν̃2, µ̃1, µ̃2) without violating relation (27) and without
inducing any restriction on transformation (28). We would like to add that this
idea of invariance was first introduced in Bouda and Djama (2002b). However
the goal in this reference was not to determine the minimum number of pertinent
parameters which would be playing the role of integration constants, but it was
only to check that the choice of the couple of solutions (φ1, φ2) does not affect the
equation of motion.

Before going further, it is crucial to note that the extension to higher di-
mensions of the invariance of the derivatives of S0 will induce insurmountable
calculations. This is the reason for which we turn condition (27) into the invari-
ance of S0,

S0 = S̃0 + hl0, (30)

up to an additive constant hlo. It is then interesting to remark that for two
arbitrary functions f and g, if

arctan(f ) = arctan(g) + l1, (31)

we can easily deduce that

f − g = k1 (1 + fg) , (32)

where k1 = tan (l1). Then, substituting (26) and (29) in (30) and applying (31) and
(32), we deduce

2∑
i=1

2∑
j=1

[k(µiµ̃j + νi ν̃j ) + ν̃jµi − νiµ̃j ]φiθj = 0, (33)

where

k = tan
(
l0 + l̃ − l

)
. (34)

From transformation (28), we can deduce φi

φi =
2∑

l=1

βil θl, (35)

where βij can be determined by the system of four equations

2∑
j=1

βijαjl = δil . (36)



1330 Bouda and Meziane

Substituting (35) in (33), we find

2∑
j=1

2∑
l=1

[
µ̃j

2∑
i=1

(kµi − νi) βil + ν̃j

2∑
i=1

(kνi + µi) βil

]
θlθj = 0. (37)

This equation contains three independent terms and then the coefficients
which precede θ2

1 , θ2
2 and θ1θ2 must take a vanishing value

µ̃1

2∑
i=1

(kµi − νi) βi1 + ν̃1

2∑
i=1

(kνi + µi) βi1 = 0, (38)

µ̃2

2∑
i=1

(kµi − νi) βi2 + ν̃2

2∑
i=1

(kνi + µi) βi2 = 0, (39)

µ̃1

2∑
i=1

(kµi − νi) βi2 + ν̃1

2∑
i=1

(kνi + µi) βi2 + µ̃2

2∑
i=1

(kµi − νi) βi1

+ ν̃2

2∑
i=1

(kνi + µi) βi1 = 0. (40)

Thus, we have three independent equations and four unknown parameters:
ν̃1, ν̃2, µ̃1 and µ̃2. However, if we divide by ν̃1 in the quotient appearing in (29)
and define ν̃2/ν̃1, µ̃1/ν̃1 and µ̃2/ν̃1 as new parameters, it amounts to setting ν̃1 = 1
and keeping ν̃2, µ̃1 and µ̃2 unchanged. Of course, we must also take ν1 = 1 since
the same form for S0 and S̃0 is required. Furthermore, the parameter k defined by
(34) is free. A judicious choice of k allows to fix one of the parameters ν̃2, µ̃1 and
µ̃2. For example, if we take

k =
∑2

i=1 (νiβi1 − µiβi2)∑2
i=1 (νiβi2 + µiβi1)

, (41)

we can check that the system (38), (39) and (40) gives µ̃2 = 1 and allows to
express ν̃2 and µ̃1 in terms of µi , νi and βij . Of course, for the same reason as
above, we must also take µ2 = 1. As βij can be expressed in terms of αij from
(36), if we add any condition on ν̃2 or µ̃1, the system (38), (39) and (40) will induce
a relation between µ1, ν2 and αij . Since µ1 and ν2 correspond to the initial choice
(φ1, φ2) used in the initial reduced action, this relation between µ1, ν2 and αij will
represent a restriction on transformation (28) and then on the choice of the couple
(θ1, θ2). Thus, if we want to guarantee the invariance of ∂S0/∂x under any linear
transformation, we must keep free (ν2, µ1) in the expression of S0, as we must do
it for (ν̃2, µ̃1) if we choose to deal with S̃0. Finally, we reach the same conclusion
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as at the beginning of this section where these two pertinent parameters (ν2, µ1)
are identified as integration constants of the reduced action S0, expression (26).

3.2. The Two-Dimensional Case

Let us consider the two-dimensional case in which the potential takes the
form

V (x, y) = Vx (x) + Vy (y) . (42)

Writing ψ (x, y) = X (x) Y (y), the two-dimensional SE leads to

− h2

2m

d2X

dx2
+ VxX = ExX, (43)

− h2

2m

d2Y

dy2
+ VyY = EyY, (44)

where Ex and Ey are real constants satisfying

Ex + Ey = E. (45)

Let us call (X1, X2) and (Y1, Y2) two couples of real independent solutions re-
spectively of (43) and (44). Then, the two-dimensional SE admits four independent
solutions

φ1 = X1Y1, φ2 = X1Y2, φ3 = X2Y1, φ4 = X2Y2. (46)

As in one dimension, the general form of the reduced action is obtained from
(11) by writing

S0 = h arctan

( ∑4
i=1 νiφi∑4
i=1 µiφi

)
+ hl, (47)

(ν1, . . . , ν4, µ1, . . . , µ4) being arbitrary real constants satisfying a condition with
which ψ1 and ψ2 are not proportional. The equations of motion, as relations (8),
are now obtained from ∂S0/∂x and ∂S0/∂y. Then, let us impose the invariance of
the conjugate momentum components

∂S0

∂x
= ∂S̃0

∂x
,

∂S0

∂y
= ∂S̃0

∂y
(48)

under the following arbitrary linear transformation

φi → θi =
4∑

j=1

αijφj , i = 1, 2, 3, 4 (49)
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where S̃0 is the new reduced action defined as in (47)

S̃0 = h arctan

( ∑4
i=1 ν̃iθi∑4
i=1 µ̃iθi

)
+ hl̃, (50)

and αij are arbitrary real constant parameters. It is easy to show that conditions
(48) can be turned into S0 = S̃0 + hl0 as in (30). Thus, with the use of (31) and
(32), we obtain

4∑
i=1

4∑
j=1

[k(µiµ̃j + νi ν̃j ) + µiν̃j − νiµ̃j ]φiθj = 0, (51)

where k is given as in (34). In contrast to the one-dimensional case and for reasons
that will be clarified farther, we will make from (51) an expansion in φiφl and not
in θiθl . Thus, substituting (49) in (51), we get to

4∑
i=1

4∑
l=1


νi

4∑
j=1

(kν̃j − µ̃j )αjl + µi

4∑
j=1

(
kµ̃j + ν̃j

)
αjl


 φiφl = 0. (52)

Setting

Al =
4∑

j=1

(kν̃j − µ̃j )αjl, Bl =
4∑

j=1

(kµ̃j + ν̃j )αjl, (53)

Eq. (52) becomes

4∑
i=1

4∑
l=1

(Al νi + Bl µi) φiφl = 0. (54)

In this equation, we have sixteen terms (4 × 4 = 16). The symmetry φiφl =
φlφi reduces the number of terms to ten [(16 − 4)/2 + 4 = 10]. From (46), we
have also φ1φ4 = φ2φ3. Thus, in (54) we have nine independent terms. For (i, l) �∈
{(1, 4), (4, 1), (2, 3), (3, 2)}, we have eight equations

Al νi + Bl µi + Ai νl + Bi µl = 0. (55)

In the case where i = l, (55) gives four equations

µi = −Ai

Bi

νi, i = 1, 2, 3, 4 (56)

and then, by taking into account this result, (55) gives the other four equations
for i �= l

νi

Bi

= νl

Bl

, (57)
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meaning that ν1/B1 = ν2/B2 = ν3/B3 = ν4/B4. As φ1φ4 = φ2φ3, the ninth equa-
tion is obtained by combining the cases (i, l) = (1, 4) and (i, l) = (2, 3)

A4 ν1 + B4 µ1 + A1 ν4 + B1 µ4 + A3 ν2 + B3 µ2 + A2 ν3 + B2 µ3 = 0. (58)

With the use of (56) and (57), it is easy to check that (58) represents an identity.
In (56) we have four independent equations but in (57) only three. Thus, we have
seven linear equations and eight unknown parameters: (ν̃1, . . . , ν̃4, µ̃1, . . . , µ̃4)
which are present through Ai and Bi . However, as in one dimension, the oper-
ation consisting in dividing by ν̃1 in the quotient appearing in (50) amounts to
setting ν̃1 = 1 in (50) and ν1 = 1 in (47). Now, we have seven equations with
seven unknown parameters. In addition, k being free, we can choose its value in
order to obtain for example µ̃4 = 1, and then to also take µ4 = 1. This amounts to
solving our system of seven equations with respect to the following seven param-
eters: (ν̃2, ν̃3, ν̃4, µ̃1, µ̃2, µ̃3, k). As in one dimension, any further condition on
(ν̃2, ν̃3, ν̃4, µ̃1, µ̃2, µ̃3) will induce restrictions on the linear transformation (49).
In conclusion, the number of pertinent parameters of the reduced action (47), with
which we can reproduce the same equations of motion under any linear transfor-
mation, is six. As we have fixed ν1 = µ4 = 1, the pertinent parameters playing
the role of integration constants are (ν2, ν3, ν4, µ1, µ2, µ3).

We would like to add that, in contrast to the one-dimensional case, we have
made in (52) an expansion in φiφl but not in θiθl . The reason is that in two
dimensions, the ten product φiφl are not linearly independent since we have
seen that φ1φ4 = φ2φ3. This implies a more complicated relation between the ten
products θiθl and will induce a tedious calculations if we make the expansion
in θiθl .

3.3. The Three-Dimensional Case

In the same manner, let us now consider the three-dimensional case and write
the potential in the following form

V (x, y, z) = Vx(x) + Vy(y) + Vz(z). (59)

Writing ψ(x, y, z) = X(x)Y (y)Z(z), the SE in three dimensions, Eq. (10),
leads to

− h2

2m

d2X

dx2
+ VxX = ExX, (60)

− h2

2m

d2Y

dy2
+ VyY = EyY, (61)

− h2

2m

d2Z

dz2
+ VzZ = EzZ, (62)
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where Ex , Ey and Ez are real constants satisfying

Ex + Ey + Ez = E. (63)

Let us call (X1, X2), (Y1, Y2) and (Z1, Z2) three couples of real indepen-
dent solutions respectively of (60), (61) and (62). It follows that the SE in three
dimensions admits eight real independent solutions{

φ1 = X1Y1Z1, φ2 = X1Y1Z2, φ3 = X1Y2Z1, φ4 = X1Y2Z2,

φ5 = X2Y1Z1, φ6 = X2Y1Z2, φ7 = X2Y2Z1, φ8 = X2Y2Z2.
(64)

The general form of the reduced action can be deduced from (11) by writing

S0 = h arctan

( ∑8
i=1 νiφi∑8
i=1 µiφi

)
+ hl. (65)

As in the previous cases, in order to determine the pertinent parameters
among the real constants (ν1, . . . , ν8, µ1, . . . , µ8), let us impose the invariance of
the conjugate momentum components

∂S0

∂x
= ∂S̃0

∂x
,

∂S0

∂y
= ∂S̃0

∂y
,

∂S0

∂z
= ∂S̃0

∂z
(66)

under the following arbitrary linear transformation

φi → θi =
8∑

j=1

αijφj , i = 1, . . . , 8 (67)

where S̃0 is the new reduced action defined as in (65)

S̃0 = h arctan

( ∑8
i=1 ν̃iθi∑8
i=1 µ̃iθi

)
+ hl̃, (68)

and αij are arbitrary real constant parameters. Conditions (66) can be also turned
into S0 = S̃0 + hl0. Thus, as in two dimensions, we deduce that

8∑
i=1

8∑
l=1

(Al νi + Bl µi)φiφl = 0, (69)

where

Al =
8∑

j=1

(kν̃j − µ̃j )αjl, Bl =
8∑

j=1

(kµ̃j + ν̃j )αjl. (70)

In (69), we have sixty-four terms (8 × 8 = 64). The symmetry φiφl = φlφi

reduces this number to thirty-six [(64 − 8)/2 + 8 = 36]. From (64), all possible
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relations which we can deduce between the products φiφl are{
φ1φ4 = φ2φ3, φ1φ6 = φ2φ5, φ1φ7 = φ3φ5,

φ2φ8 = φ4φ6, φ3φ8 = φ4φ7, φ5φ8 = φ6φ7
(71)

and

φ1φ8 = φ2φ7 = φ3φ6 = φ4φ5. (72)

In (71) and (72) we have nine independent relations. It follows that in (69),
we have twenty-seven independent terms (36 − 9 = 27). For the terms i = l, we
deduce eight relations

Ai νi + Bi µi = 0, (73)

leading to

µi = −Ai

Bi

νi, i = 1, . . . , 8. (74)

If

(i, l) ∈ {(1, 2), (1, 3), (1, 5), (2, 4), (2, 6), (3, 4),

(3, 7), (4, 8), (5, 6), (5, 7), (6, 8), (7, 8)} , (75)

from (69) we deduce the following twelve relations

Al νi + Bl µi + Ai νl + Bi µl = 0. (76)

Taking into account relations (74), these last relations lead to

νi

Bi

= νl

Bl

. (77)

If we look more closely at the set given in (75), we deduce that (77) is
valid ∀ i ∈ [1, 2, . . . , 8] and ∀ l ∈ [1, 2, . . . , 8]. By using the couples of indexes
appearing in (71) and (72), we can deduce the seven remaining relations (27 −
8 − 12 = 7). We can check that they all represent identities. For example, with
the first relation in (71), we deduce from (69)

A4 ν1 + B4 µ1 + A1 ν4 + B1 µ4 + A3 ν2 + B3 µ2 + A2 ν3 + B2µ3 = 0. (78)

If we substitute in this relation µ1, µ2, µ3 and µ4 by their values given in
(74) and take into account (77), we easily obtain an identity. We emphasize that
with (72), we have only one relation which is also an identity.

The twelve relations (76) are reduced, with the use of (74), to seven inde-
pendent equations given in (77). The five missing relations are identities. This
means that the system (74) and (76) is turned into the system (74) and (77) which
contains fifteen (8 + 7 = 15) independent linear equations and sixteen unknown
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parameters (ν̃1, . . . , ν̃8, µ̃1, . . . , µ̃8) which are present through Ai and Bi . How-
ever, as in the previous cases, the operation consisting in dividing by ν̃1 in the
quotient appearing in (68) amounts to setting ν̃1 = 1 in (68) and then ν1 = 1 in
(65), since the same form for S0 and S̃0 is required. Again, the freedom in choosing
k allows us to fix another parameter. Then, if we choose for example µ̃8 = 1, we
have also to take µ8 = 1. Of course, any further condition on ν̃i or µ̃i will induce
restriction on the linear transformation (67). In conclusion, the number of pertinent
parameters in (65) is fourteen, and with the above choice, these parameters are
(ν2, . . . , ν8, µ1, . . . , µ7). They play a role of integration constants of the reduced
action, expression (65). In addition, we notice that the same reasons as in two
dimensions have not allowed us to make in (69) an expansion in θiθl .

4. MICROSTATES

In this section, we will examine if the initial conditions, which determine
completely the Schrödinger wave function, are sufficient to determine all the
pertinent parameters of the reduced action. In other words, knowing that the
reduced action is the generator of motion, one may wonder if, to these initial
conditions of the wave function, correspond one or many trajectories of the particle.

For this purpose, remark that the constant c appearing in (23) can be absorbed
in the parameters α and β when we use relation (3) or (5). Thus, in any dimension,
let us write

R =
√

ψ2
1 + ψ2

2 (79)

and substitute in (5) the reduced action S0 by its expression (11)

� = R

{
(|α| + |β|) cos

[
arctan

(
ψ1

ψ2

)
+ l + a − b

2

]

+ ı (|α| − |β|) sin

[
arctan

(
ψ1

ψ2

)
+ l + a − b

2

]}
, (80)

where we have discarded the unimportant constant phase factor exp [i(a + b)/2].
Since the additive constant l appearing in (11) has no dynamical effect, we can
choose it equal to (b − a)/2. Therefore, with the use of (79) and some trigono-
metric relations, we have

R cos

[
arctan

(
ψ1

ψ2

)]
= ψ2, R sin

[
arctan

(
ψ1

ψ2

)]
= ψ1 (81)

and Eq. (80) turns out to be

� = (|α| + |β|) ψ2 + i (|α| − |β|) ψ1. (82)
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This relation is valid in any dimension. First, it allows to reproduce the well-
known results in one dimension obtained in (Bouda, 2001). In fact, comparing
(11) and (26), we have

ψ1 = φ1 + ν2φ2, ψ2 = µ1φ1 + φ2, (83)

where we have set ν1 = µ2 = 1 as indicated in the previous section. Substituting
(83) in (82), we obtain

� = [µ1 (|α| + |β|) + i (|α| − |β|)] φ1 + [(|α| + |β|) + iν2 (|α| − |β|)] φ2.

(84)
On the other hand, the wave function can be written as a linear combination

of the two real independent solutions φ1 and φ2

� = c1 φ1 + c2 φ2, (85)

where c1 and c2 are generally complex constants determined by the initial or
boundary conditions of the wave function. Identification of (84) and (85) leads to

c1 = µ1 (|α| + |β|) + i (|α| − |β|) , (86)

c2 = |α| + |β| + iν2 (|α| − |β|) . (87)

In the case where |α| �= |β|, separating the real part from the imaginary one
in (86) and (87), we obtain a system of four equations which can be solved with
respect to |α|, |β|, µ1 and ν2. It follows that in the complex wave function case
(|α| �= |β|), the initial conditions of the wave function � fix univocally the reduced
action. There is no trace of microstates. In the real wave function case (|α| = |β|),
up to a constant phase factor, (86) and (87) do not allow to determine ν2. Thus,
for a given physical state �, we have a family of trajectories, specified by the
different values of ν2, corresponding to microstates not detected by the SE. The
same conclusion is also reached in Floyd (1996a). We would like to add that if
we use the Bohm ansatz (α = 1, β = 0), Eqs. (86) and (87) imply that Im c1 = 1
and Re c2 = 1. This is an unsatisfactory result since c1 and c2 are fixed by the
initial conditions of the wave function and, then, we must not obtain fixed values
for Im c1 and Re c2. This is also the proof that the presence of α and β in the
relation between the reduced action and the Schrödinger wave function, Eq. (3),
is necessary. However, among the four real parameters which define the complex
number α and β, there are only two which are linked to the initial conditions of
the wave function. The two others are superfluous. This has been seen in Bouda
(2001) by showing that the functions R and S0 are invariant under a dilatation
and a rotation in the complex space of expression (3) of the wave function. This
invariance allowed to make a transformation which fixed the two superfluous
degrees of freedom. In our above reasoning we have eliminated these superfluous
parameters first by discarding in (80) the phase factor exp [i(a + b)/2] and second
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by choosing (b − a)/2 equal to the additive integration constant l in (82). This
means that we have fixed the phases a and b of α and β and kept free |α| and |β|.
These modulus are determined by the four real equations which can be deduced
from (86) and (87), meaning that |α| and |β| are linked to the initial conditions of
the wave function.

The two-dimensional case is similar to the three-dimensional one. For this
reason, we straightforwardly investigate microstates in three dimensions. Com-
paring (11) and (65), we have

ψ1 = φ1 +
8∑

i=2

νi φi, ψ2 =
7∑

i=1

µi φi + φ8, (88)

where we have set ν1 = µ8 = 1 as indicated in Section 3. The functions φi are
defined in (64). Substituting (88) in (82), we obtain

� = [µ1 (|α| + |β|) + i (|α| − |β|)] φ1

+
7∑

i=2

[µi (|α| + |β|) + iνi (|α| − |β|)] φi

+ [|α| + |β| + iν8 (|α| − |β|)] φ8. (89)

As above, the wave function can be written as a linear combination of φi

(i = 1, . . . , 8)

� =
8∑

i=1

ciφi, (90)

where ci are complex constants which can be determined by the boundary condi-
tions of the wave function. Identification of (89) and (90) leads to

c1 = µ1 (|α| + |β|) + i (|α| − |β|) , (91)

ci = µi (|α| + |β|) + iνi (|α| − |β|) , i = 2, 3, . . . , 7 (92)

c8 = |α| + |β| + iν8 (|α| − |β|) . (93)

In the complex wave function case (|α| �= |β|), separating the real part from
the imaginary one, we obtain from these relations a system of sixteen equations
which can be solved with respect to the sixteen following unknown (|α|, |β|, ν2, . . .,
ν8, µ1, . . ., µ7). As in one dimension, the knowledge of (c1, . . . , c8) is sufficient
to fix univocally the reduced action. There is no trace of microstates. In the real
wave function case (|α| = |β|), up to a constant phase factor, it is clear that the
system (91), (92) and (93) does not allow to determine (ν2, ν3, . . . , ν8). As in one
dimension, for a given physical state �, we have a family of trajectories, specified
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by the values of (ν2, ν3, . . . , ν8), corresponding to microstates not detected by the
SE. We also reach the same conclusion in two-dimensions, namely microstates
appear only in the real wave function case. We would like to add that also in higher
dimensions, |α| and |β| are linked to the initial conditions of the Schrödinger
wave function since these modulus are fixed by the system (91), (92) and (93),
or its analogous in two dimensions. As in one dimension, the phases a and b are
superfluous and have been eliminated in (82).

5. CONCLUSION

This work can be summarized in three main results.
The first concerns the resolution in three dimensions of the QSHJE rep-

resented by the couple of relations (1) and (2). For any external potential, the
expressions of the couple of functions (R, S0) are given in terms of a couple of
real independent solutions of the SE. In other words, we reduced a problem of two
non-linear partial differential equations to one linear equation.

The second result concerns the identification in the case of separated variables
of the pertinent parameters playing a role of integration constants of the reduced
action. Of course, in one dimension, the solution of this problem is already known
(Floyd, 1986; Faraggi and Matone, 1998b, 1999, 2000; Bouda, 2001). However,
in higher dimensions, we had to solve two coupled partial differential equations
and, then, we had no means to fix the number of integration constants since the
standard method does not work. We surmounted this difficulty by imposing the
invariance of the reduced action, up to an additive constant, under an arbitrary
linear transformation of the set of solutions of the SE. This amounts to requiring
that, for any choice of the set of solutions of the SE, we reproduce the same
equations of motion. In this procedure, our task consisted in determining the
minimum number of parameters which we must keep free in such a way as to
impose this invariance of the reduced action. We first applied this new procedure
in one dimension and reproduced the expected results (Bouda, 2001). We then
extended the approach to two and three dimensions.

The third principal result we obtained concerns microstates. We showed that
in one dimension, as in higher dimensions, microstates appear only in the case
where the Schrödinger wave function is real, up to a constant phase factor. In
higher dimensions, it is the first time that microstates are analytically described.
As indicated in Landau et al. (1967), in the case where there is no degeneracy,
bound states are described by real wave functions. Thus, bound states reveal
microstates not detected by the Schrödinger wave function. As concluded in the
one-dimensional case (Floyd, 1996a), in higher dimensions the Schrödinger wave
function does not describe exhaustively quantum phenomena. The QSHJE is more
fundamental.
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Landau, L. and Lifchitz, E. (1967). Mécanique Quantique, Moscou, Edition Mir.
Matone, M. (2002a). Foundations of Physics Letters 15, 311.
Matone, M. (2002b). arXiv e-print, hep-th/0212260.


